SEPARATION OF VITAMINS A_1 AND A_2 AND ALLIED COMPOUNDS BY THIN-LAYER CHROMATOGRAPHY

K. V. JOHN, M. R. LAKSHMANAN, F. B. JUNGALWALA AND H. R. CAMA Department of Biochemistry, Indian Institute of Science, Bangalore (India) (Received June 16th, 1964)

Within the last few years, thin-layer chromatography has made very rapid strides in the separation of fat-soluble vitamins and particularly of a few derivatives of vitamin A, kieselgel and alumina being employed as adsorbents¹⁻⁷. A recent report⁸ also indicates distinct separation of the isomers of vitamins A_1 and A_2 on kieselgel plates. The present communication describes a simple, rapid and reproducible method for the resolution of vitamin A_1 and A_2 compounds, including the epoxy-derivatives of vitamin A with established structures⁹.

EXPERIMENTAL

The modified procedure for preparing thin-layer plates described below is essentially similar to that of STAHL^{10,11}. Kieselgel (25.5 g, E. Merck) mixed with plaster of Paris (4.5 g, 300 mesh) in the ratio 85:15 (w/w) is well slurried with 60.0 ml of distilled water. The slurry is then applied on five glass plates (20×20 cm) with the help of a special applicator to give a fine thin layer of the adsorbent with a uniform thickness of 0.25 mm. The plates are dried at 120° for one h and stored in big desiccators until used.

Vitamins A_1 and A_2 and the allied compounds under examination are applied with the aid of a 0.1 ml micropipette, either individually or in mixtures, each spot containing about 5-30 μ g of the substance. The substances are applied along a straight line on the plate, about 2.5 cm from the bottom, and the spots are spaced at a distance of 3 cm from one another. The chromatogram is developed by the ascending method for about 2 h in a special closed rectangular all-glass chamber, with 200 ml of any one of the following three solvent systems: (a) 6% (v/v) acetone in light petroleum (40-60°), (b) 15% (v/v) diethyl ether in light petroleum and (c) 3% (v/v) acetone in iso-octane.

When the solvent front reaches a distance of about 16-18 cm from the point of application of the compounds, the plate is removed from the chamber and allowed to dry at room temperature for a few seconds. Immediate examination of the plate, under ultraviolet light (wavelength 366 m μ) reveals the distinct separation of the various compounds which either fluoresce or absorb, depending on their characteristic property. The boundary of each concentric spot can be very easily marked with the help of a pin and further conclusive characterisation of the various spots is carried out

by spraying the chromatogram with $SbCl_3$ reagent (25 % w/v) when the various compounds of the vitamin A_1 and A_2 group give characteristic blue, violet, pink and yellow spots. Alternatively, the various spots located under ultraviolet light can also be

μį	
BL	
ΓA	

THIN-LAYER CHROMATOGRAPHIC SEPARATION OF VITAMIN A₁ AND A₂ COMPOUNDS

Substance	Band as observed in 11 V 1:24.*	R _F values ^{**}			Amax. in light	SbCl ₃ colour-test
	0.1.1.1	6 % (v/v) acetone in light petrol	15% (v/v) diethyl ether in light petrol	3% acetone in iso-octane	(n/m) round	Luar. (mft)
Anhydrovitamin A ₁ Vitamin A ₁ palmitate Vitamin A ₁ acetate Vitamin A ₁ aldehyde Vitamin A ₁ alcohol Vitamin A ₁ acid	Bright yellow fluor. Blue fluor. Blue fluor. Dull black absorb. Blue fluor. Dull black absorb.	0.93 ± 0.01 0.91 ± 0.01 0.70 ± 0.02 0.53 ± 0.01 0.20 ± 0.01 0.20 ± 0.01	$\begin{array}{c} 0.82 \pm 0.01 \\ 0.76 \pm 0.02 \\ 0.47 \pm 0.01 \\ 0.26 \pm 0.01 \\ 0.08 \pm 0.02 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} 0.82 \pm 0.01 \\ 0.79 \pm 0.01 \\ 0.49 \pm 0.01 \\ 0.21 \pm 0.02 \\ 0.08 \pm 0.01 \\ 0.00 \end{array}$	350, 370, 390 325 325 370 370 370	620 (blue) 620 (blue) 620 (blue) 620 (blue) 620 (blue) 573 (red)
Anhydrovitamin A ₂ Vitamin A ₂ acetate Vitamin A ₂ aldehyde Vitamin A ₂ alcohol Vitamin A ₂ acid	Bright yellow fluor. Green fluor. Dull black absorb. Green fluor. Dull black fluor.	$\begin{array}{c} 0.87 \pm 0.02 \\ 0.69 \pm 0.01 \\ 0.50 \pm 0.01 \\ 0.17 \pm 0.02 \\ 0.00 \end{array}$	$\begin{array}{c} \textbf{0.69} \pm \textbf{0.02} \\ \textbf{0.45} \pm \textbf{0.01} \\ \textbf{0.33} \pm \textbf{0.01} \\ \textbf{0.03} \pm \textbf{0.02} \\ \textbf{0.00} \end{array}$	$\begin{array}{c} \textbf{0.61} \pm \textbf{0.01} \\ \textbf{0.47} \pm \textbf{0.01} \\ \textbf{0.20} \pm \textbf{0.01} \\ \textbf{0.28} \pm \textbf{0.01} \\ \textbf{0.08} \pm \textbf{0.01} \\ \textbf{0.00} \end{array}$	350, 370, 390 350 385 350 370	693 (blue) 693 (blue) 735 (greenish blue) 693 (blue) —
5,6-Moncepoxy-vitamin A palmitate 5,6-Moncepoxy-vitamin A acetate 5,6-Moncepoxy-vitamin A alcohol 5,6-Moncepoxy-vitamin A palmitate 5,8-Moncepoxy-vitamin A acetate 5,8-Moncepoxy-vitamin A alcohol 5,8-Moncepoxy-vitamin A alcohol 5,8-Moncepoxy-vitamin A alcohol	Faint blue fluor. Faint blue fluor. Dull black absorb. Faint blue fluor. Faint blue fluor. Faint blue fluor. Dull black absorb. Faint blue fluor.	0.84 ± 0.01 0.68 ± 0.01 0.44 ± 0.02 0.07 ± 0.01 0.81 ± 0.01 0.65 ± 0.01 0.42 ± 0.01 0.42 ± 0.01 0.07 ± 0.01			310, 325 310, 325 352 352 310, 325 280 317 280 280	460 (yellow) 460 (yellow) 440 (yellow) 465 (yellow) 460 (yellow) 440 (yellow) 465 (yellow)
β -Carotene	Orange spot	I.00	1.00	I.00	430, 450, 470	555 (blue)

J. Chromatog., 19 (1965) 53–56

* Fluor. = fluorescence; absorb. = absorbance.

** Mean values of eight observations.

Fig. 1. Schematic representation of the separation of vitamins A_1 and A_2 and allied compounds by thin-layer chromatography, using kieselgel.

vitamin A_2 acid.

Mixture I:

 β -C = β -carotene; AnA₁ = anhydrovitamin A₁; A₁P = vitamin A₁ palmitate; A₁ \overline{AC} = vitamin A₁ acetate; R₁ = vitamin A₁ aldehyde; A₁OH = vitamin A₁ alcohol; A₁ \overline{AD} = vitamin A₁ acid.

 $AnA_2 = anhydrovitamin A_2; A_2\overline{AC} = vitamin A_2 acetate; R_2 =$

vitamin A₂ aldehyde; A₂OH = vitamin A₂ alcohol; A₂ \overline{AD} =

Mixture II :

Mixture III:

Mixture IV:

VI. Rat-liver oil:

5,6-P = 5,6-monoepoxy-vitamin A palmitate; 5,6-AC = 5,6-mono-epoxy-vitamin A acetate; 5,6-R = 5,6-monoepoxy-vitamin A aldehyde; 5,6-OH = 5,6-monoepoxy-vitamin A alcohol.
5,8-P = 5,8-monoepoxy-vitamin A palmitate; 5,8-AC = 5,8-monoepoxy-vitamin A aldehyde; 5,8-OH = 5,8-monoepoxy-vitamin A alcohol.
8,6 - 6-carotene; AnA - anhydrovitamin A A P = vitamin A

V. Wallago Attu liver oil:

 β -C = β -carotene; AnA₁ = anhydrovitamin A₁; A₁P = vitamin A₁ palmitate; AnA₂ = anhydrovitamin A₂; HFA₂ = higher fatty acid esters of vitamin A₂; 330 m μ = the 330 m μ compound; MAOH = mixture of vitamins A₁ and A₂ alcohols.

 $A_1P = vitamin A_1 palmitate; A_1OH = vitamin A_1 alcohol.$

scraped out and eluted with a diethyl ether-light petroleum mixture (1:1 v/v). After removal of the solvent under reduced pressure, the absorption spectra of the various compounds in light petroleum were recorded in a Beckman DU spectrophotometer. In addition, to confirm the authenticity of the respective compounds, the SbCl₃ colour-test absorption maxima were also recorded in the spectrophotometer as described by CAMA, COLLINS AND MORTON¹².

J. Chromatog., 18 (1965) 53-56

55

RESULTS AND DISCUSSION

The R_F values of the various compounds analysed as well as some of their properties are given in Table I. Fig. 1 shows a typical schematic representation of the separation of compounds in a 6 % (v/v) acetone in light petroleum system.

This technique has been successfully applied to the separation of constituents of fish-liver oils and rat-liver extracts. Confirming the separation achieved by column chromatography¹³ and reverse phase paper chromatography¹⁴, freshwater fish-liver oil of Wallago attu gave nine distinct bands corresponding to β -carotene, anhydrovitamins A_1 and A_2 , vitamin A_1 palmitate, higher fatty acid esters of vitamin A_2 , two unidentified substances, the uncharacterised compound with λ_{max} , at 330 m μ and a mixture of vitamins A₁ and A₂ alcohols. The rat-liver unsaponifiable fraction gave a faint band of vitamin A₁ palmitate and a prominent band of vitamin A₁ alcohol. The presence of trace amounts of vitamin A palmitate in the rat-liver unsaponifiable fraction may well be due to incomplete saponification. Furthermore, the 5,6- and 5,8-monoepoxy-vitamin A group of compounds also gave distinct separations agreeing very well with respect to the palmitate, acetate, aldehyde and alcohol forms.

Thus, thin-layer chromatography as applied to the vitamin A group of compounds has the advantage of clear and complete resolution of individual components from a mixture in micro and macro quantities without any trailing whatsoever. Further, as it is much less time-consuming, it has the added advantage that the decomposition of the generally extremely unstable and labile vitamin A_1 and A_2 group of compounds is prevented. Attempts to apply the above method quantitatively were, however, unsuccessful.

ACKNOWLEDGEMENTS

We wish to thank Dr. OTTO ISLER, Hoffmann-La Roche, Basle, for the generous gift of crystalline synthetic vitamin A. The financial assistance of the C.S.I.R. (India) is gratefully acknowledged.

SUMMARY

A simple and rapid method for the separation of vitamins A_1 and A_2 and allied compounds by thin-layer chromatography using kieselgel has been described. The method, however, cannot be applied for quantitative estimation.

REFERENCES

- 1 K. FONTELL, R. T. HOLMAN AND G. LAMBERTSEN, J. Lipid Res., 1 (1960) 391. 2 H. K. MANGOLD AND D. C. MALINS, J. Am. Oil Chemists' Soc., 37 (1960) 383. 3 A. WINTERSTEIN, A. STUDER AND R. RÜEGG, Chem. Ber., 93 (1960) 2951.

- 4 A. WINTERSTEIN AND B. HEGEDÜS, Z. Physiol. Chem., 321 (1960) 97.

- 5 A. WINTERSTEIN AND B. HEGEDÜS, *Chimia (Aarau)*, 14 (1960) 18.
 6 J. DAVÍDEK AND J. BLATINÁ, J. Chromatog., 7 (1962) 204.
 7 O. R. BRAEKKAN, *Intern. Z. Vitaminforsch.*, 33 (1963) 293.
 8 C. V. PLANTA, U. SCHWIETER, L. CHOPARD-DIT-JEAN, R. RÜEGG, M. KOFLER AND O. ISLER, Helv. Chim. Acta, 45 (1962) 548. 9 F. B. JUNGALWALA AND H. R. CAMA, Biochem. J., (1965) in press.

- 10 E. STAHL, Chemiker Zig., 82 (1958) 323. 11 E. STAHL, Arch. Pharm., 292 (1959) 411. 12 H. R. САМА, F. D. COLLINS AND R. A. MORTON, Biochem. J., 50 (1951) 48.
- 13 S. BALASUNDARAM, M. S. BAMJI, H. R. CAMA, P. R. SUNDARESAN AND T. N. R. VARMA, J. Biol. Chem., 233 (1958) 827.
- 14 F. B. JUNGALWALA AND H. R. CAMA, J. Chromatog., 8 (1962) 535.

J. Chromalog., 18 (1965) 53-56